Background

In 1997 the Minnesota Historical Society had the good fortune to acquire a presentation grade Civil War sword (MHS Accession Number 1997.382.1.1-2) belonging to Henry Hastings Sibley (1811-1891), Minnesota's first governor and commander of the Minnesota Military District during the Dakota Conflict of 1862. This paper outlines the treatment of the Sibley sword in preparation for its exhibition debut at the Minnesota History Center in 1998.

A native of Detroit, Henry Hastings Sibley arrived in what would later become Minnesota in 1834 as an agent for the American Fur Company. Sibley began practicing law in 1838 and was elected a Congressman to represent the Territory of Wisconsin in 1848. In 1855 he was elected to the Minnesota Legislature as a representative from Dakota County. Minnesota was admitted as the nation’s thirty-second state in 1858, and Sibley was elected the first governor. On August 17, 1862 several Dakota Indians attacked the Lower Sioux Agency near the Minnesota River after failing to receive overdue treaty payments. Governor Alexander Ramsey commissioned Sibley as a colonel and placed the former political figure in charge of a volunteer military force against the Dakota, ending the conflict on September 23 in a battle in Yellow Medicine County. In the spring of 1863, General Sibley led a punitive expedition into Dakota Territory. Prior to their departure, Sibley's staff officers presented him with this sword as a symbol of their loyalty and respect.

The presentation sword is a non-regulation staff and field officer's sword with a single-edged blade bearing acid-etched foliate and military motifs.

Figure 1. Overview of sword and scabbard.

The basket-type brass guard features a pierced-design foliate motif with the letters “US”.

MINNESOTA HISTORICAL SOCIETY

CONSERVATION OF THE SIBLEY PRESENTATION SWORD: WITH EMPHASIS ON THE STABILIZATION OF THE SWORD CORD

By Adam Scher, Curator
Paul Storch, Senior Objects Conservator
Minnesota Historical Society
January 2004
Figure 2. Detail of basket-type guard.
The brass eagle pommel cap is fitted to a nickel silver handle wrapped with brass wire.

Figure 3. Detail of the pommel and hilt.
The scabbard is nickel steel with a brass throat, bands, rings and drag. The drag, or scabbard end cap, is decorated with foliate motifs, flags, and a relief image of a soldier at rest.
Figure 4. Detail of scabbard drag.

The scabbard is engraved:

Presented
to
Brig. Gen. H.H. Sibley
By
The officers of his staff
May 18th, 1863

Affixed to the scabbard rings are the remnants of a bullion sword cord, also called the sword knot in military terminology. These knots were looped around the hand to prevent the sword from being lost if dropped.

United States Army uniform regulations for 1861 specified a gold cord knot with an acorn end for general officers (1). The cord was composed of a gold bullion thread braided over a woven cotton core. The braided acorn was worked over a wood (usually beech) form in a lattice design applied by hand using a needle to interlace. These knots were often manufactured in Europe for American military equipment suppliers like Schuyler, Hartley & Graham, which had a subsidiary in Great Britain (2).

Conservation Condition
The overall condition of the sword and scabbard was stable and good. There was generalized tarnish on the brass and nickel-plated components. The sword knot, however, was in poor and unstable condition. The metallic threads were broken in five areas on one of the strands of the cord, and the interior cotton warps were exposed. The acorn was completely missing from the end of the cords. The existing bullion cordage is darkened from abrasion and soiling.

Figure 5. Sword knot showing loss in metal threads due to abrasion and stress during use and handling.
Conservation Treatment

In consultation with the curator, it was decided to treat the sword and scabbard to return it to a well-maintained, as-used condition. The goals of the treatment were to reveal the original metal surfaces, and to stabilize the cord with minimal intervention of the structure. It is desirable and ethical from a conservation and curatorial standpoint to treat an historic object so that it “reads” correctly. Often, this means the replacement of sections or completely missing parts. The attachment methods should be unobtrusive and easily removable without damage to the original materials. These principles guided the stabilization of the cord knot assembly. The following describes the method of filling the losses in the cord with minimal intervention and maximum reversibility.

A new #41 sword knot cord and acorn were purchased from Legendary Arms Co. (Flemington, N.J.). The surfaces of the new cord weaving were coated with cellulose nitrate lacquer during the manufacturing process. The surface of a section of the new metal and cotton warps were coated with 1:1 Acryloid B-72 in acetone prior to cutting to consolidate it as the braiding was relatively loose compared to the original cord. A section of the new cord was cut with a new scalpel blade. The section was slit lengthwise to open the weave.

Most of the warps were pulled out of the center of the weaving with forceps. B-72 1:1 in acetone was then applied to the interior surfaces of the metal weaving in order to stabilize the weaving structure so it not would fall apart during manipulation and placement on the original warps.

The loose original frayed metal threads and warps on the sword knot were couched down with B-72 in acetone in both the loss and the non-loss areas. The new cord section was wrapped over the original warps in the loss areas and attached with small amounts of B-72.
Figure 7. The original cord during preparation for the new section fill.

The loose metal threads on the new sections were trimmed at either end with a scalpel. The patch was properly tinted with acrylic-based paints in order to blend in with the surrounding surface colors. Two main areas were filled in this manner. The original cords were reshaped manually.

Figure 8. Detail of the completed fill.

The missing acorn on the end of one of the cords was replaced with a new acorn that was colored with acrylic paints as described above. Steel pins were inserted into the end of the acorn where it was cut from the new knot cords. The other ends of the pins were inserted into the ends of the original knot cords. No adhesive was used to attach the acorn so it can be removed at any time.
Figure 9. Detail of the conserved cord and acorn.

The metal components were degreased with acetone to remove fingerprint residues and other oil-based dirt. Acidified thiourea solution was used to reduce and remove tarnish. The parts were rinsed with deionized water and polished with aluminum oxide paste. The polish residue was removed with acetone. The copper alloy parts were coated with 3% v/v Incralac in toluene to retard future tarnish accumulation. The steel components were coated with 3% Acryloid B48N, v/v, for the same reason.

Figure 10. Sword and Scabbard after treatment.

Summary
This article describes a non-invasive, time-effective fill treatment to compensate for a loss in a woven element on an object. It accomplished the goals of stabilizing the existing metallic threads and warps, so that further unraveling would be stopped, and reintegrating a visually disturbing loss. The knot assembly now “reads” properly. The replacement of the missing acorn could also be termed a minimally invasive treatment. The replacement part was based on curatorial research and the method used for attachment is completely reversible and non-destructive to the original material. It will be visible upon close inspection but not distracting.

This treatment method can be applied to other braided cord textile objects, such as passementerie in historic house museums and clothing collections.

NOTES
